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Probability distribution function in the gas of paramagnetic particles
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In this paper we consider a system of noninteracting paramagnetic particles with a spin S in a dc mag-
netic field. The exact expression for the probability distribution function of a transverse spin component
is obtained for the gas in thermodynamic equilibrium. Dependences of the probability on the
thermofield parameter SuH (3 is the inverse temperature, p is the Bohr magneton, H is a field strength)
and S are investigated. It is shown that this distribution reflects the quantum nature of the spin and both
the spin-wave and the classical approximation formulas are obtained.
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An electrically neutral quantum particle with spin S in
an external magnetic field is described with the simplest
Zeeman Hamiltonian [1]

FH=—2uH-S, (1)

where H is a field strength, u is the Bohr magneton, and
S is a spin operator. If the field H is constant its direc-
tion can always be chosen as z and the eigenvalues of the
Hamiltonian will be

E(,z =—2uHo, . (2)

Here H=H,,and 0,=—S,—S+1,...,S, where S is the
value of the spin. In the case when the gas of the parti-
cles with the magnetic moment 2u.S is in a stationary and
homogeneous magnetic field in equilibrium with thermos-
tat with temperature 7'=1/f3 its state can be described
with the Gibbs density matrix [2]

p=7Z'exp(—BH) , (3)

where Z =Sp(e #/) is a partition function. From (3) it

is easy to derive the probability distribution w, for the
longitudinal spin component Sz,
w, =Z 1% @)

Dependence of the probability (4) on the thermofield pa-
rameter v =pBuH is universal, i.e., its behavior does not
depend on the spin value S. Particularly, for arbitrary S,
w,, decreases with v if o, =0, increases if o, =S, has a

maximum for the finite values of v if 0 <o, <8, and goes
to zero in the limit v — . Because of this property, v
dependences of the quantum distribution function (Bril-
louin function) and its classical counterpart (Langevin
function) are qualitatively indistinguishable [3].

The quantum nature of the spin can be seen explicitly
from the probability distribution of the transverse com-
ponent of the spin in a constant magnetic field. In this
paper we demonstrate that the v dependence of the corre-

4

sponding function is determined by the value of S. In
particular, it is shown that v dependences of the quantum
probability function and its classical counterpart, which
corresponds to the limit S— o, u—0, 2uS=m, are
different.

To obtain the probability distribution function the gen-
eralized coherent state representation [4] is used. This
representation allows us to construct the generating func-
tion for the corresponding matrix elements from a partial
differential equation of first order.

The probability for the spin component S to have the
eigenvalue o in the state described by the density matrix
(3) is the diagonal matrix element

w,={olploy=2"ale™ o) , (5)

where |o ) is an eigenstate of the S, operator

S.loY=clo), o=—8,—S+1,...,5 . )

It is possible to use formula (5) directly to obtain w, for
small values of the parameter v, expanding (5) in series in
v. For arbitrary values of v an expression for w, can be
derived with the generating function

57(2,2*,v)=(zlezuszla) , (7

where |z ) is a normalized generalized coherent state vec-
tor [4] defined as

2y =(1+ 225%™~
Here S~ S LS is the annihilation spin operator, |S )
is an eigenvector of the S operator with a maximum ei-
genvalue S, and z is a complex variable. Vectors (8) are
not orthogonal, but they form a complete system where
the expansion of the unitary operator is

25 +1 f

“ls) . (8)

(1+| \2)2 |z)(z|= 9)

Here a’ z=d(Rez)d(Imz) and integration is performed
over the entire complex plane z. In this representation
the wave function is {z|y)=(1+]z|?)"Sp(z*), where
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@(z*)is a polynom1al in z* with a power not exceeding
2S and the operators S and §* —S +LS have the form

(218, =(z|[S—2z*(8/3z*)], (2|8 =(z|(3/3z*),

(10
(z|§ =(z|[28z*—z**d/3z*)] .

Considering the function f(z*,v)=(1+|z|*)5F z,z*,v)
and differentiating it in v, one obtains the partial
differential equation

(8f /3v)+2z*(df /3z*)=2Sf , (1mn
the general solution of which has the form
flz¥ v)=e¥y(z*e ™), (12)

where y is an arbitrary function. To determine Y one can
use an “initial condition” H(z,z*,0)=(z|c ), which fol-
lows from (7), The function (z|o) is an eigenvector of
the operator S in a coherent state representation,

(z|8,|loY=0(zlo) , (13)
and using (10) we have
(z|8]o)=

L(A+1z) 7528z +(1—2*%)(3/32%)]

X (1+]z|2)%(zlo) . (14)

Zlg)

57(2,2*,v)=2(zla’)(o’|e2vs

=(14 2SS (CS5 7 /22517 o'

us’|0)(1+z*
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Comparing (13) and (14) one obtains the equation for
(zlo),

1(1—z*)(dp/3z*)+Sz*p=0¢ , (15)

with @=(1+|z|*)5(z|o), the normalized solution of

which is
@ (2*)=(C35 7 /22521 —2*)S7o(1+42%)5t7 | (16)

Here C3g  is a binomial coefficient.
Substitution of (16) in (12) gives an expression for the
generating function:

g(z,zt’v)=eZSu(CiS‘S—a/2ZS)1/2(1+1Z|2)—S
X(l_z*e-—?.u)S—o(1+z*e-2v)S+a (17)
or
Hz,z*,0)=e(C35 7 /22" 21+ |2|>) ~S(142*)*S

X {coshv +[(1—2z*)/(142z*)]sinhv }S*°

X {sinhv +[(1—2z*)/(1+z*)]coshv }57° .

(18)

From the definition (7) of the generating function and
expression (16) it follows that

ST (1—z*)S77" . (19)

On the other hand, the product of the binomials in (18) is a.generating function for Jacobi polynomials [5,6],

(coshv + x sinhv )25 ~*(sinhv + x coshv )"=cosh*5v 2 x"[ni2S —n)/mi2S —mN]"2q,p,/q,\p,)?

m =0

X(tanhv)

where n=S —o (n=0,1,...,25), g, =min(m,n,2S —n,
28 —m), py=max(m,n,2S —n,28 —m), and q,+q,=p,
+p,=28.

The probability distribution function is a diagonal ma-
trix element (0 =0¢’). From the symmetry of the system
it follows that the probability of interest does not depend
on the sign of 0. We shall demonstrate this explicitly
below; now we shall assume that o =0 for definiteness.
Comparing (19) and (20) one obtains

(ole 2 2lo ) =cosh??vP{®% (cosh2v) . (1)

Taking into consideration that the partition function for
the system (2) is Z =sinh(2S +1)v /sinhv, the expression
for the probability distribution is

w, =[sinhv /sinh(2S + 1)v Jcosh?? P2 (cosh2v) . (22)

To investigate the dependence of the probability w, on
the thermofield parameter v and to obtain asymptotic re-
sults for S— oo it is more convenient to use the integral
representation of (22). To obtain an integral form of (22)
one can multiply (16) by {o|z ) and integrate over z. Us-

min(n, m)— 9,

min(2S —n,2S —m)— (Py—Gs,p, —
(tanhv) " (1~ tanh?) 2,221 (coshaw),

(20

ing expansion (19) and the orthonormalization of (o|z)
one has

w,=Z NS5 7eS/225)[(28 +1) /]

x [ TEp ‘225+2(1+z)””(1—z) e

x(1+z*e—-20)5+¢7(l_z*e—Zv)S—a . (23)

One can notice here that after switching to polar coordi-
nates in the complex z plane (z=|z|e**) and carrying out
the integration over phase ¢ the integrand depends only
on |z|2. Hence e ~” can be distributed arbitrarily between
z and z* and the following expression for w, can be ob-
tained:

Ww, =

Z 35 7e®S /229 [(28 +1) /7]

dzZ -V o -v -0
xfWHHze $*ro(l—ze )51, (24
which is symmetric in +o.

As pointed out above, the dependence of the probabili-
ty w, on v as v <<1 can be obtained directly from (5).
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The expansion in powers of v is
w,=[1/(2S +D]{1+[LS(S +1)—0?]p?} . (25)

For v=0 formula (25) gives equal probabilities
w,=(2S+1 )~1, which are independent of o. This
means that there is not any chosen direction in zero
external field. If v5<0 the additional term in (25) is posi-
tive for 02 <1S(S+1), and negative for o> 1S(S +1).
In the case UZZ%S(S—FI) one has to consider the v*
term in (25), which is negative for such o. Thus in this
region of v the probability increases if 02 < +S(S'+1) and
decreases if 02> 1S(S+1).

In the inverse limit case v >>1 one can obtain depen-

dence on v from (24), expanding it in powers of e ~ 2%
With accuracy up to e ~# one has
C3s 20% | _,,
w0=~zzs— 1+ 1——5‘ e 2
|20 (20*=S)’ | _4&
s 20s—n |© | 26

It follows from (26) that w, increases with v for 202<§
and decreases for 202>S. The limit value w, when
v— o (extremely strong magnetic field or low tempera-
tures) is C5g 7 /2%5.
From (25) and (26) it follows that for § > 1 (in the case
S =1 the probability does not depend on v and equals 1)
the probability increases with v for 02<S /2, decreases
with v for 02> S(S+1)/3, and has a maximum at some
finite value of v for (§/2)<o?<S(S+1)/3. All these
features are shown explicitly in Figs. 1(a)-1(d), where
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FIG. 1. Dependence on the thermofield parameter of the quantum probability distribution function for S=71 for (a) o=

w,(v) is plotted for S=21. An asymptotic behavior for
the probability w, when S >>1 depends on the relation
between S and o.

Consider first the case when o <<S. Using Sterling’s
formula for factorials [5] and the stationary phase ap-

proximation for the integration in (24), one has
w, =(tanhv /7S)!?exp( —x*tanhv) , 27

where x =0 /V'S. Then
dw, =(tanhv /7)!/?exp( —x *tanhv )dx . (28)

This result coincides with the distribution function of the
coordinate of an oscillator [2]. One can derive (28)
directly from the Hamiltonian (1), changing the spin
operators to Bose operators and the generalized
coherent-state representation to Glauber coherent-state
representation (i.e., the space of the polynomials with the
space of the analytical functions). Such a substitution
corresponds to a Holstein-Primakoff representation for
spin operators [7].

Another limit case is a transition to the classical angu-
lar momentum of a fixed magnitude. This transition cor-
responds to the limit S— oo, o0—o, u—0 when
2uS=m and 2uo=m,. Switching to the new variable
z'=ze” ' in (24) and introducing the parametrization
z'=tan(6/2)e*®, 050 <m, 0= ¢ <27, one has

w, =(e®STV/Z)C35°/28)[(2S +1) /7]
X [ [1+(e*—1)sin?6/2] 7%
X (1+sinf cosg)S (1 —sinbcos¢)S " °dO , (29)

where the integration is performed over the unit sphere
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dO =sin0d0d¢.
in the integrand is

The limit expression for the first factor

lim e2v(S+1)[1+(e2u_

1 )sin2(6/2)]‘25=eBchose .
208 —BmH,S —

(30)

To determine the asymptotes in the rest of the factors in
(29) one should notice that the product

1+sinf cosd
2

1—sinf cos¢
2

P3s°=C355 (31

is the binomial probability distribution for the realization
of an event (S — o) times in 2S trials, if the probability of
an event realization in each trial is p =(1—sin6 cos¢)/2.
The asymptote of such a distribution when S — o and
S —o — o is the limit Muavre-Laplace formula [8]

o)~ _ 1l m—np,
Py(S—0)= ‘/mexp 2(‘/@) (32)

Here n=2S, m=S—o, and ¢=1—p. Performing the
transition to the limit one has

. lim SP,s(S—o0)=258[sinfcosp—(m, /m)] (33)
and
w,=(Z~'/m) [ dO ePmH <595 [sinf cosp—(m, /m)] . (34)

In the classical limit the partition function in (34) can be
expressed in terms of the classical partition function
Z=S8SZ_/2mw. Taking into account that dm,/m in the
classical case corresponds to 1/S in quantum considera-
tions, one obtains the probability distribution function
for the component m, of the classical spin,

Zg' x
dw,, =dm,—— [ dO ePH <% |sin6 cos ] ) (35)
x m
Performing the integration in (35) one has
—_ ﬁH 2 2\1/2
=— H - d , 36
dw,,,x ZSinthHIO[B (m?—m})'"?)dm, (36)

where I(u) is the modified Bessel function. In the region
BmH <<1 the dependence of the probability distribution
function (36) on the thermofield parameter is similar to
that of the quantum function (25) (with the correspond-
ing substitution S+1—S). However, in the region
BmH >>1 the classical formula (36) essentially differs
from its quantum counterpart. In particular, there is no
region of m, (except m, =0) where the probability distri-
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bution increases with SmH.

Thus, comparing results obtained for the probability
distribution function of the transverse spin component S
in the dc magnetic field with the probability distribution
function (4) for the longitudinal spin component S,, one
can see that the quantum nature of the spin is displayed
explicitly in the distribution function for the transverse
spin component. In the spin-wave approximation, quant-
ization of the transverse spin component (i.e., discrete
spectra) becomes unobservable.

We have derived an exact expression (22) for the quan-
tum probability distribution function for the transverse
spin component S for an equilibrium system of nonin-
teracting paramagnetic particles in an external magnetic
field. The probability dependence on the thermofield pa-
rameter depends on the relation between S and o. Both
the spin-wave (S— o, o <<S) (28) and the classical
(S— o0, 00—, u—0, 2uS=m, 2uS, =m,) (36) approx-
imation formulas for the quantum probability distribu-
tion function are obtained. In both of these limit formu-
las the discreteness of the transverse spin component is
unobservable.

The dependences on the thermofield parameter v of the
quantum and the classical probability distribution func-
tions can be understood from the following physical ex-
planation:

(1) For v =0 all space directions are equivalent, so that

(82)=(8})=(82)=5(S+1)/3. For 0<v <<1, the z
direction becomes slightly preferab]e (a spin chooses the
field direction). This means that (S?) increases with v
and hence because of the conservation of the spm magni-
tude and the symmetry in the xy plane, (S2) decreases
with v. So the probability for the particle to have the
transverse spin component o increases with v for
02<S(S+1)/3 and decreases for o2>S(S+1)/3. It is
evident that for this v region there is no difference in the
quantum and the classical cases since the distribution of
spin values is determined by thermal fluctuations.

(2) In strong magnetic fields or under low tempera-
tures (v >>1) the spin tends to have the field direction.
Classically, this means that up to an exponential accura-
cy the transverse spin components m, =m, =0, and the
classical probability distribution increases with v only for
m, =0.

On the other hand, in the quantum case, because of the
uncertainty principle the fluctuation of the transverse
spin component in the eigenstate |S) of the longitudinal
spin component S is S'/2 and the probability for the par-
ticle to have the transverse spin value o increases with v
when 02 <S /2 and decreases with v when 02> S /2.
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